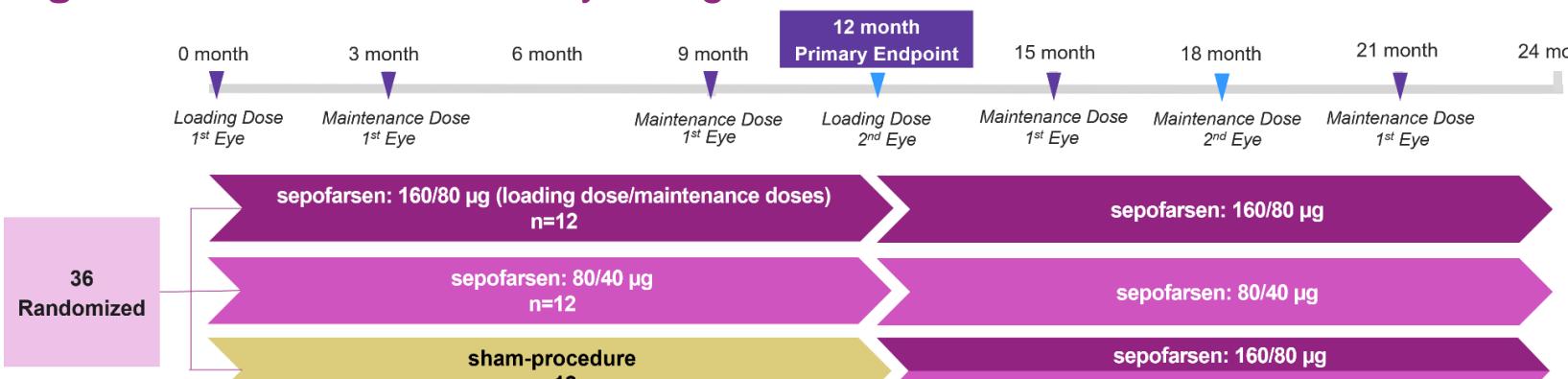
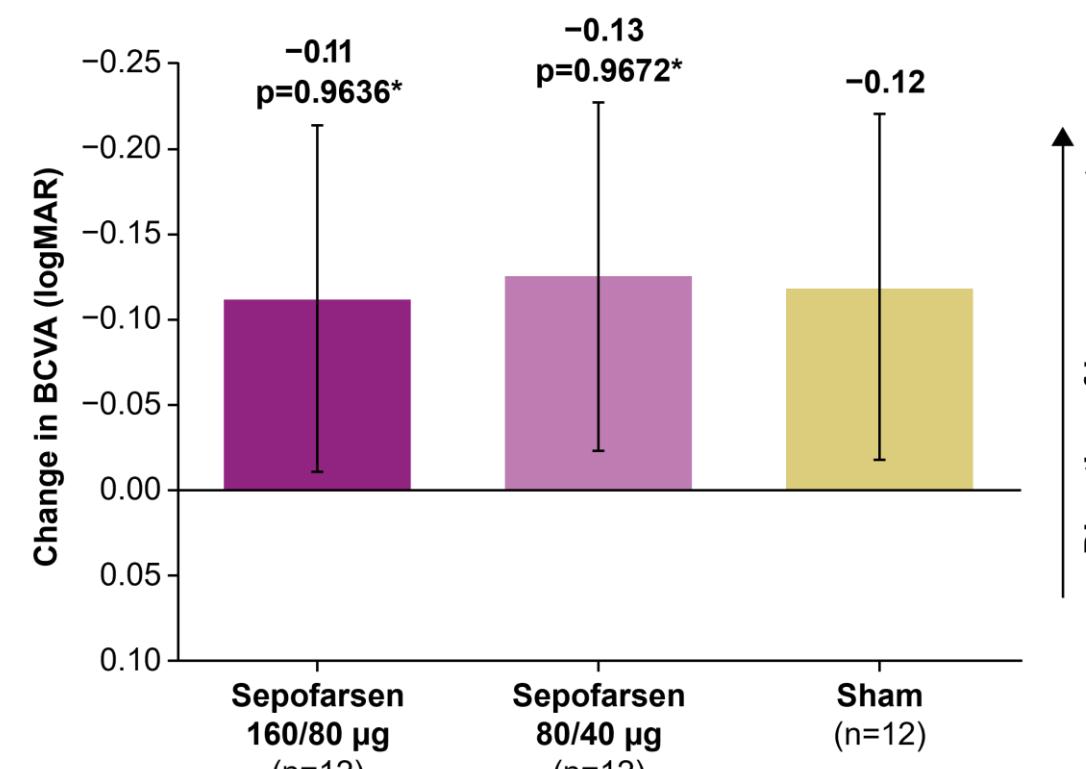


RNA-based therapy in Leber congenital amaurosis type 10 (LCA10): key lessons learned from the randomized, double-masked, sham-controlled, Phase 3 study of sepfarsen

6395 –
A0510


Bart P. Leroy^{1,2}, Katarina Stingl^{3,4}, Isabelle Audi⁵⁻⁷, Camiel J.F. Boon^{8,9}, Fernanda B.O. Porto¹⁰⁻¹², Michel Michaelides^{13,14}, Hélène Dollfus¹⁵, L. Ingeborgh van den Born¹⁶, Lyubomyr M. Lytvynchuk^{17,18}, Francesca Simonelli¹⁹, Juliana M.F. Sallum^{20,21}, Robert K. Koenekoop²², Elise Héon^{23,24}, Stephen R. Russell²⁵, Ursula Garczarek²⁶, Zuhal Butuner²⁶, Michael Schwartz²⁶

¹Department of Ophthalmology & Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; ²Department of Head & Skin, Ghent University, Ghent, Belgium; ³Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany; ⁴Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany; ⁵Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de référence maladies rares REFERET et INSERM-DHOS CIC 1423, CHNO des Quinze-Vingts, Paris, France; ⁶Institute of Ophthalmology, University College London, London, UK; ⁷Sorbonne Université, INSERM, Institut de la Vision, Paris, France; ⁸Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; ⁹Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; ¹⁰IRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil; ¹¹Inst. do Ensino e Pesquisa da Santa Casa de Belo Horizonte, IEP/SBHI, Belo Horizonte, Minas Gerais, Brazil; ¹²Centro Oftalmológico de Minas Gerais, CGMG, Belo Horizonte, Minas Gerais, Brazil; ¹³IOL Institute of Ophthalmology, University College London, London, UK; ¹⁴Moorefields Eye Hospital, City Road Campus, London, UK; ¹⁵Centre des Affections Rares en Génétique Ophtalmologique (CARGO), University of Strasbourg, Strasbourg, France; ¹⁶The Rotterdam Eye Hospital, Rotterdam, The Netherlands; ¹⁷Department of Ophthalmology, Eye Clinic, Justus-Liebig-University Giessen, University Hospital Giessen and Marburg GmbH, Campus Giessen, Giessen, Germany; ¹⁸Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria; ¹⁹Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "L. Vanvitelli", Naples, Italy; ²⁰Department of Paediatric Surgery, Human Genetics and Adult Ophthalmology, MUHC, Montreal, QC, Canada; ²¹Genetics and Genome Biology (GGB) Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; ²²Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; ²³Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; ²⁴Sepul Bio, Laboratoires THEA, France


Introduction

- *CEP290*-related inherited retinal disorder (*CEP290*-IRD) manifests mostly as Leber congenital amaurosis type 10 (*CEP290*-LCA10), an ultra-rare disease that causes severe visual impairment in early childhood¹
- There are no approved treatments, only symptomatic management¹
- The investigational RNA antisense oligonucleotide sepfarsen targets the frequent c.2991+1655A>G mutation in *CEP290*. It restores normal splicing of the pre-mRNA transcript to result in normal *CEP290* mRNA and increased production of functional *CEP290* protein²
- The Phase 3 ILLUMINATE study (NCT03913143; **Figure 1**) was a double-masked, randomized, parallel-arm, sham-controlled, Phase 3 study which investigated the efficacy, tolerability, and safety of sepfarsen in 36 participants aged \geq 8 years with *CEP290*-LCA10 with at least one allele with the c.2991+1655A>G mutation³
- ILLUMINATE did not meet its primary endpoint of change from baseline in best-corrected visual acuity (BCVA) at Month 12 versus sham-procedure (**Figure 2**)⁴
- Treatment effects were difficult to estimate due to large variability in participant responses

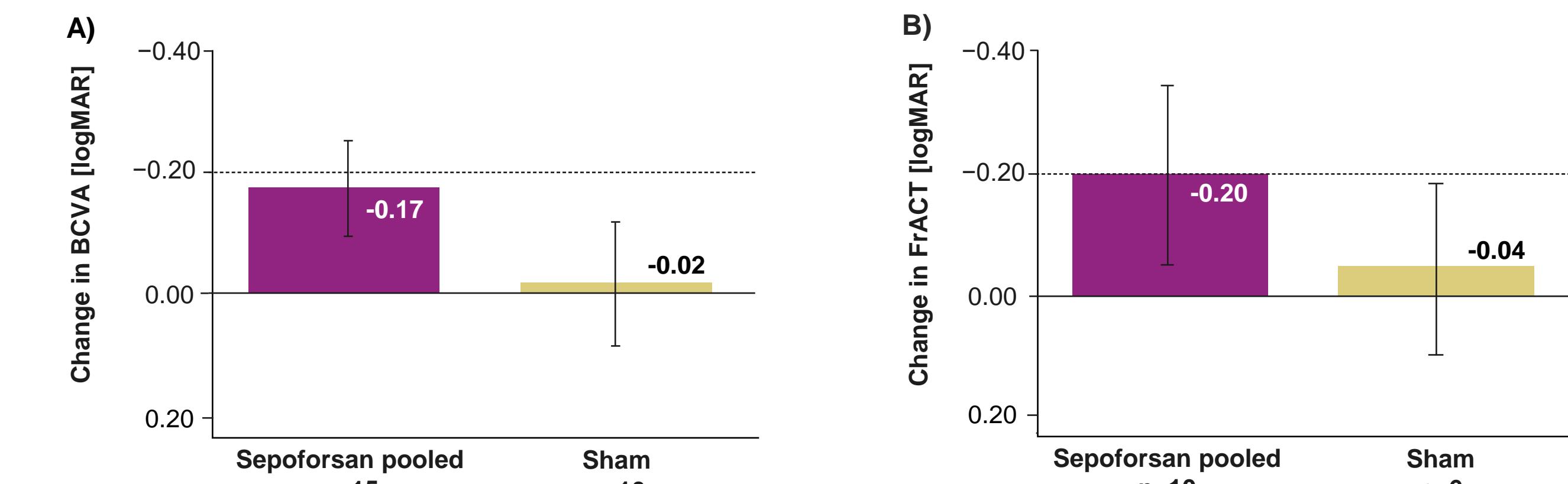
Figure 1. ILLUMINATE study design

Figure 2. Change from baseline in BCVA at Month 12 versus sham-procedure in ILLUMINATE study (ANCOVA efficacy set)

ANCOVA, analysis of covariance; BCVA, best-corrected visual acuity

- Evidence of clinically meaningful improvements in visual function were observed in individual-level data (data on file)
- In the context of an ultra-rare disease with significant heterogeneity, inter-participant and inter-visit variability in treatment response, a post-hoc analysis of ILLUMINATE was conducted emulating a paired-eye design to estimate treatment effect

Methods


Post-hoc analysis

- This post-hoc analysis compared the paired treated eye (TE) with the untreated contralateral eye (CE) for each individual participant with symmetric disease receiving sepfarsen – referred to as the “paired-eye comparison”
 - The untreated CE served as a surrogate for a randomized placebo control eye
- The same analysis was performed in the sham arm to assess for expectation and selection bias
- For comparison, the original parallel design analysis is repeated on patients with symmetric disease (**Table 1**)
- Mean estimated difference (MED) of the logarithm of the minimum angle of resolution (logMAR) was assessed

Results

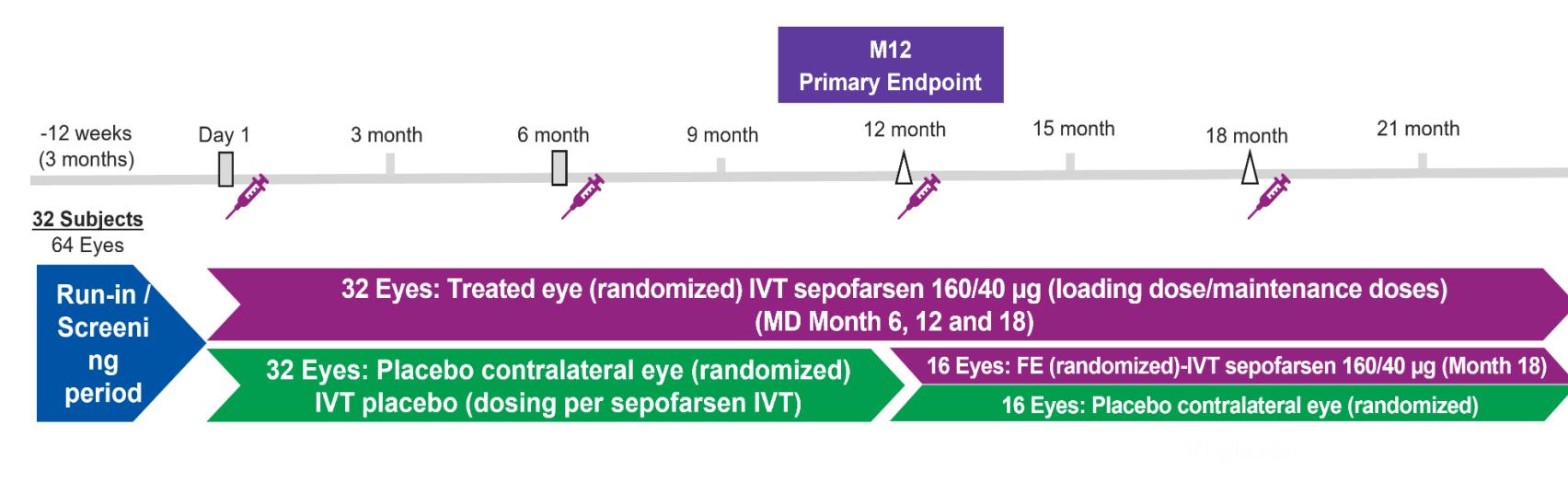
- In the paired-eye comparison, BCVA improvement from baseline was observed in the pooled sepfarsen arm at Month 12 but not in the sham arm, as measured by ETDRS/BVRT and FrACT assessments (**Figure 3**)

Figure 3. Estimated mean difference in a) BCVA (logMAR) using ETDRS/BVRT and b) BCVA (logMAR) using FrACT from baseline at Month 12 – paired-eye comparison*

*The primary analysis used an extension of a paired t-test to allow for the inclusion of baseline visual acuity (average BCVA of both eyes) and laterality of the eye as covariates. BCVA, best-corrected visual acuity; BVRT, berkeley rudimentary vision test; ETDRS, early treatment diabetic retinopathy study; FrACT, freiburg visual acuity and contrast test; LogMAR, logarithm of the minimum angle of resolution.

- BCVA MED variability was reduced by 39%, reflecting an improvement, with the paired-eye comparison providing a more reliable estimate of treatment effect than the parallel design (**Table 1**)

Table 1. Variability by endpoint


Endpoint	N (participants)	Parallel Overall (Active, Sham)	Paired	Parallel	Paired	Parallel	Paired	N (subjects)	95% CI Width	Equivalent SD
BCVA [logMAR]	25 (15,10)	15		-0.07 (-0.32,0.18)	-0.17 (-0.33,-0.02)	0.61	0.28	40,0%	38,8%	54,4%
FST.R [log cd_m2]	23 (14, 9)	14		0.18 (-0.40,0.77)	-0.27 (-0.53,-0.01)	1.36	0.45	39,1%	55,9%	66,9%
LogCS [log10(invPerc)]	17 (11, 6)	11		0.20 (-0.13,0.53)	0.15 (-0.04,0.35)	0.65	0.29	35,3%	41,2%	55,0%
MOBILITY [Score]	24 (14,10)	14		2.34 (0.47,4.21)	1.04 (-0.40,2.48)	4.44	2.50	41,7%	23,1%	43,7%

cd, candela; CI, confidence interval; invPerc, inverted Percent; Log, logarithm; LS, least square; MAR, logarithm of minimum angle of resolution; SD, standard deviation.

Conclusions

- These findings suggest that a paired-eye design:
 - Is effective in controlling for inter-participant and inter-visit variability in efficacy endpoint assessments
 - May be more appropriate in evaluating efficacy in an ultra-rare IRD, such as *CEP290*-LCA10, by providing more reliable estimates of treatment effects across multiple efficacy endpoints
- These learnings from ILLUMINATE have informed the design of HYPERION – an innovative, paired-eye, randomized, Phase 3 study of the efficacy and safety of sepfarsen (**Figure 4**)
 - To reduce inter-participant and inter-visit variability, HYPERION includes changes to the run-in period (additional training and familiarization) and endpoint selection (see poster 6393 - A0508)

Figure 4. HYPERION design – an innovative, paired-eye, Phase 3 study

IVT, intravitreal; LD, loading dose; M, month; MD, maintenance dose.

Acknowledgements

Medical writing support was provided by ApotheCom and funded by Sepul Bio, Laboratoires THEA.

Disclosures for first author

Bart P. Leroy has served as a consultant/contractor for Laboratoires THEA.

References

1. Leroy BP, et al., *Retina*. 2021;41:898–907.
2. Russell SR, et al. *Nat Med*. 2022;28:1014–1021.
3. A Study to Evaluate Efficacy, Safety, Tolerability and Exposure After a Repeat-dose of Sepofarsen (QR-110) in LCA10 (ILLUMINATE). Clinicaltrials.gov (NCT03913143). Available at: <https://clinicaltrials.gov/study/NCT03913143>.
4. ProQR Announces Top-Line Results from Phase 2/3 Illuminate Trial of Sepofarsen in CEP290-mediated LCA10. Press Release. ProQR Therapeutics N.V. February 11, 2022. Available at: <https://www.proqr.com/press-releases/proqr-announces-top-line-results-from-phase-23-illuminate-trial-of-sepfarsen-in-cep290-mediated-lca10>.