

Freiburg Vision Test (FrACT) for assessing visual acuity in Leber congenital amaurosis type 10 (LCA10) patients

Jasleen K. Jolly^{1,2}, Michael Bach³, Bart P. Leroy^{4,5}, Katarina Stingl^{6,7}, Isabelle S. Audo^{8–10}, Camiel J.F. Boon^{11,12}, Fernanda B.O. Porto^{13–15}, Michel Michaelides^{16,17}, Hélène Dollfus¹⁸, L. Ingeborgh van den Born¹⁹, Lyubomyr M. Lytvynchuk^{20,21}, Francesca Simonelli²², Juliana M.F. Sallum^{23,24}, Robert K. Koenekoop²⁵, Elise Héon^{26,27}, Stephen R. Russell²⁸, Ursula Grczarek²⁹, Michael Schwartz²⁹

¹Jolly Vision Science and Vision Sciences, University of Melbourne, VIC, Australia; ²Faculty of Medicine, Eye Center, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany; ³Department of Ophthalmology & Center for Medical Genetics, Ghent University Hospital & Ghent University Ghent, Belgium; ⁴Division of Ophthalmology & Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; ⁵Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany; ⁶Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany; ⁷Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de référence maladies rares, REFERET and INSERM-DHOS CIC 1423, CHNO des Quinze-Vingts, Paris, France; ⁸Institute of Ophthalmology, University College London, London, UK; ⁹Sorbonne Université, INSERM, Institut de la Vision, Paris, France; ¹⁰Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; ¹¹INERET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, Brazil; ¹²Instituto de Ensayos e Pesquisa da Santa Casa de Belo Horizonte, IEP/SCBH, Belo Horizonte, Minas Gerais, Brazil; ¹³Centro Oftalmológico de Minas Gerais, COMG, Belo Horizonte, Minas Gerais, Brazil; ¹⁴The Rotterdam Eye Hospital, Rotterdam, The Netherlands; ¹⁵Department of Ophthalmology, Eye Clinic, Justus-Liebig-University Giessen, Giessen, Germany; ¹⁶Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria; ¹⁷Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "L. Vanvitelli", Naples, Italy; ¹⁸Department of Ophthalmology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; ¹⁹Department of Paediatric Surgery, Human Genetics and Adult Ophthalmology, MUHC, Montréal, QC, Canada; ²⁰Genetics and Genome Biology (GGB) Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; ²¹Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; ²²Sepul Bio, Laboratoires THEA, France

Introduction

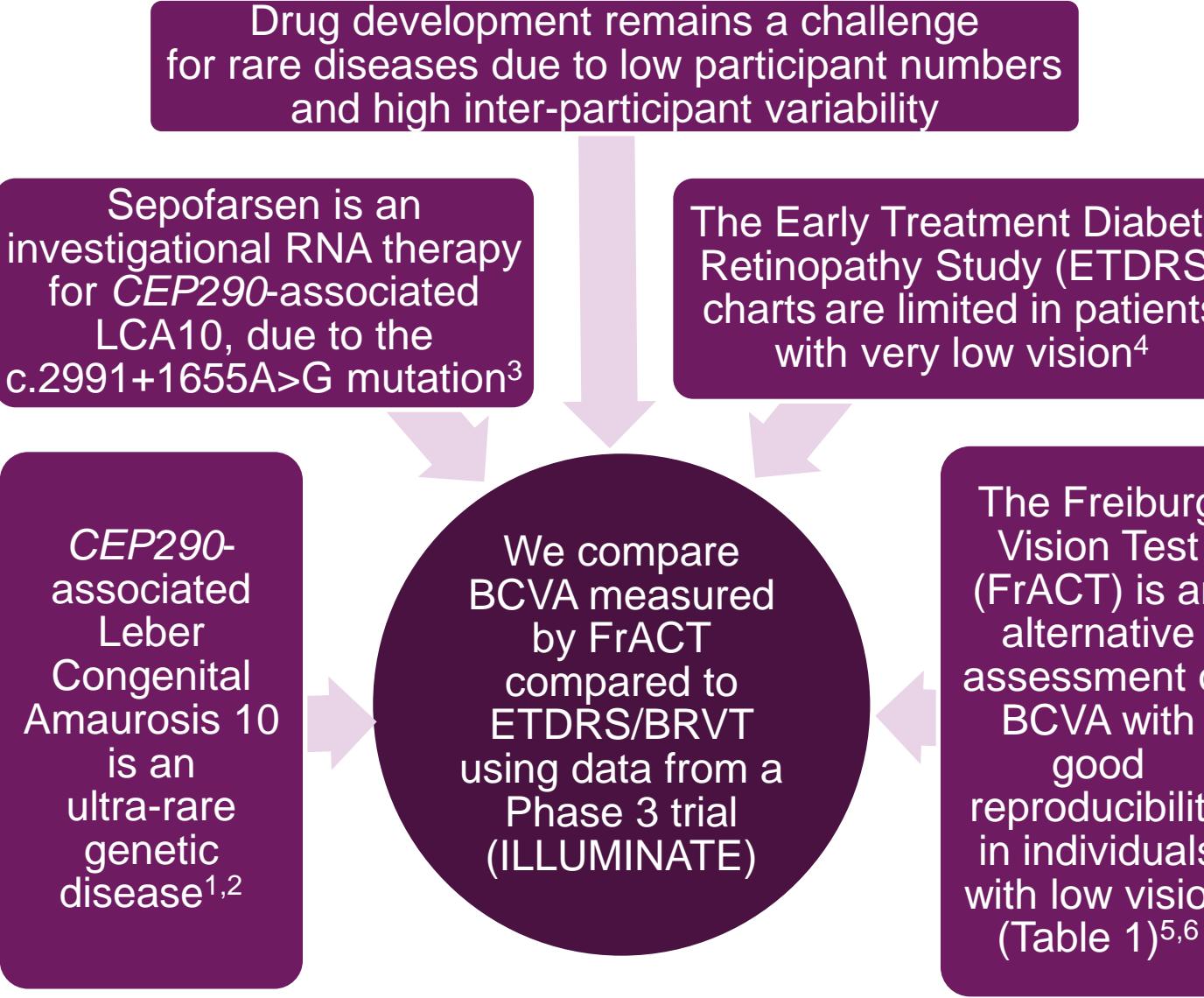


Table 1: The FrACT – key advantages, characteristics, and clinical trial use

Key advantages ^{7,8}	Characteristics ⁷	Clinical trials with FrACT outcome measure ^{7*}
<ul style="list-style-type: none"> Freely available as an open-source computer program Self-paced Assesses visual acuity, contrast sensitivity, and Vernier acuity Recommended by the Harmonization of Outcomes and Vision Endpoints in Vision Restoration Trials Taskforce Used in laboratories and trials worldwide Independently validated 	<ul style="list-style-type: none"> Includes a range of test symbols and optotypes Thresholds are assessed with a progression of symbols, using a Bayesian approach FrACT has been used as an endpoint across a broad age range of patients, including elderly and pediatric populations Results can be displayed as LogMAR, Snellen fraction, or decimal acuity Parameters are customizable 	<ul style="list-style-type: none"> More than 20 registered clinical trials have used, or are using, FrACT as an endpoint

*Examples only, this list is not exhaustive

LogMAR, logarithm of the minimum angle of resolution

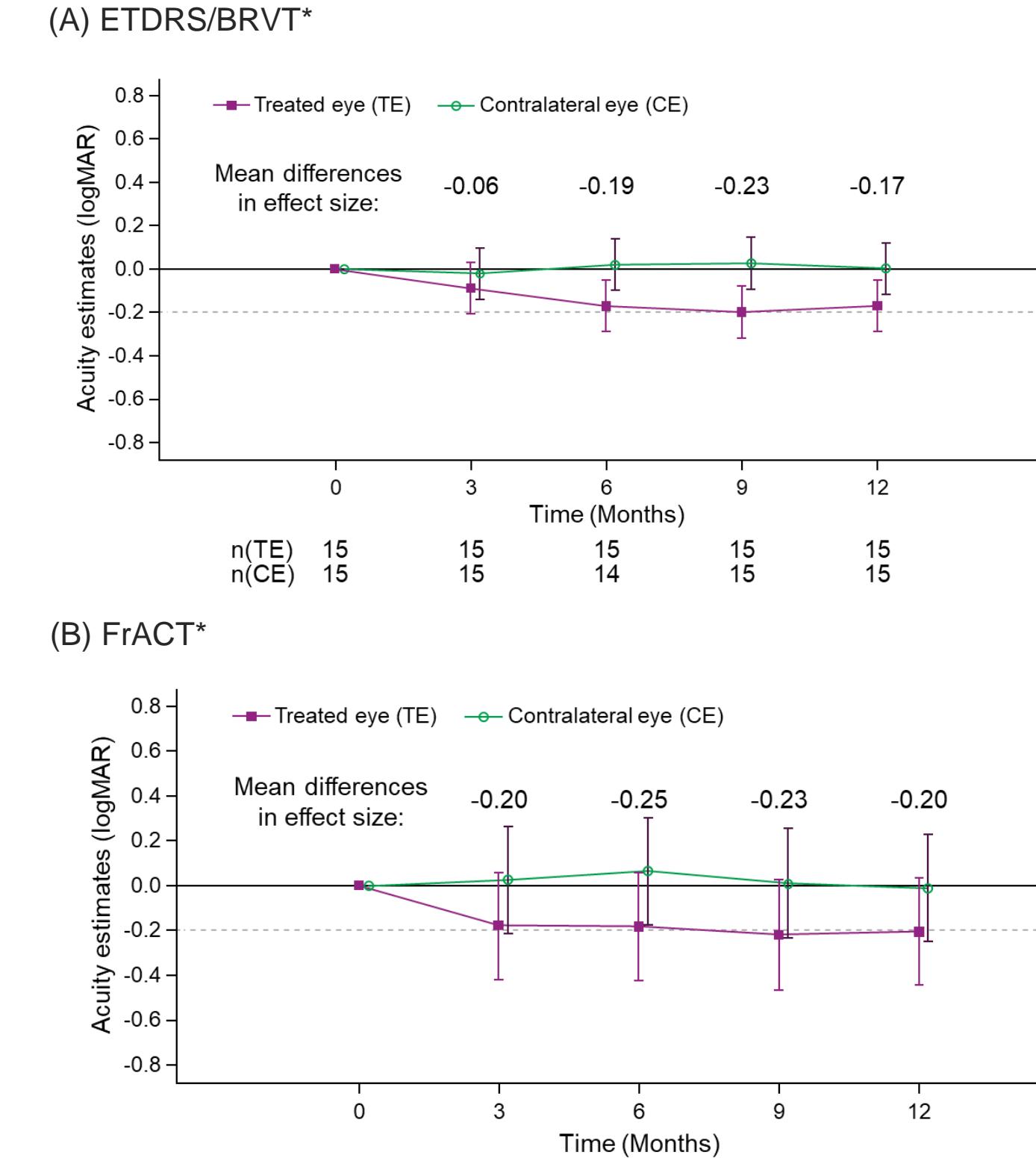
Methods

Study design and participants

- ILLUMINATE (NCT03913143) was a double-masked, randomized, sham-controlled, Phase 3 trial (Figure 1)⁹

Primary endpoint

- Change from baseline in BCVA [logMAR] at month 12
- Assessed using
 - ETDRS extended by BRVT
 - FrACT


Post-hoc analysis

- 12-month data from the pooled sepofarsen treatment groups were used to assess the alignment of the FrACT and ETDRS/BRVT by:
 - A. Comparing the effect sizes in an emulated paired-eye design
 - B. Comparing repeatability of FrACT with ETDRS/BRVT utilizing a Bland-Altman analysis

Results

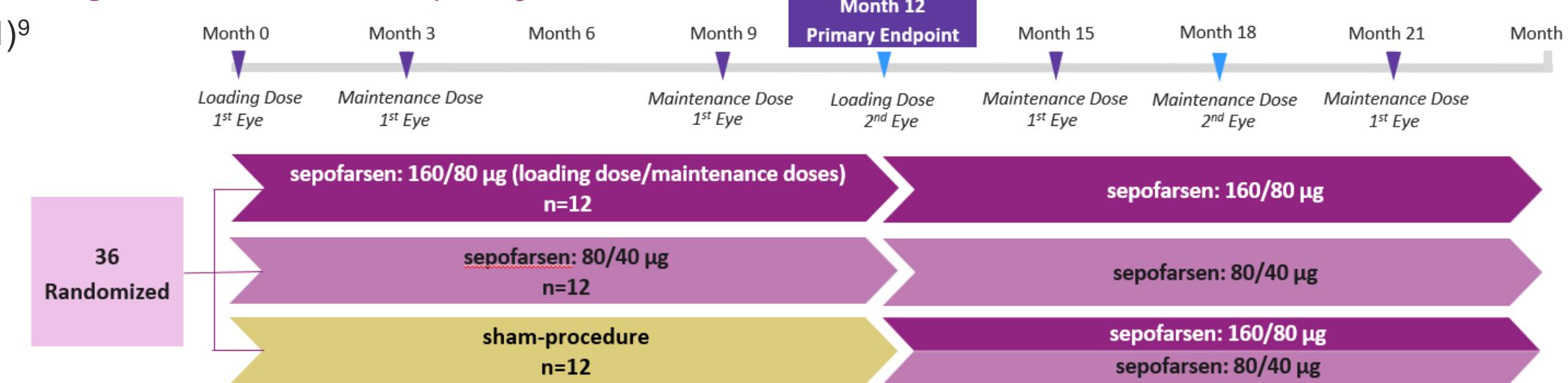

- In the emulated paired-eye design analysis, comparable estimated treatment effect sizes were seen with ETDRS/BRVT and FrACT (Figure 2)
- Repeatability of BCVA with ETDRS/BRVT and FrACT at month 12 was 0.13 logMAR for both methods
- Bland-Altman plots showed lower variability with FrACT for participants with very low vision (n=24; Figure 3)
- The maximum difference in repeated measurements from ETDRS/BRVT was 0.2 logMAR compared to 0.06 logMAR with FrACT

Figure 2. Estimated means for pooled sepofarsen groups in paired-eye design missing at random (MAR) for ETDRS/BRVT and FrACT

BCVA, best-corrected visual acuity; BRVT, Berkeley Rudimentary Vision Test; CE, contralateral eye; CI, confidence interval; ETDRS, Early Treatment Diabetic Retinopathy Study; FrACT, Freiburg Vision Test; logMAR, logarithm of the minimum angle of resolution; MAR, missing at random; N, number of eyes; TE, treatment eye.

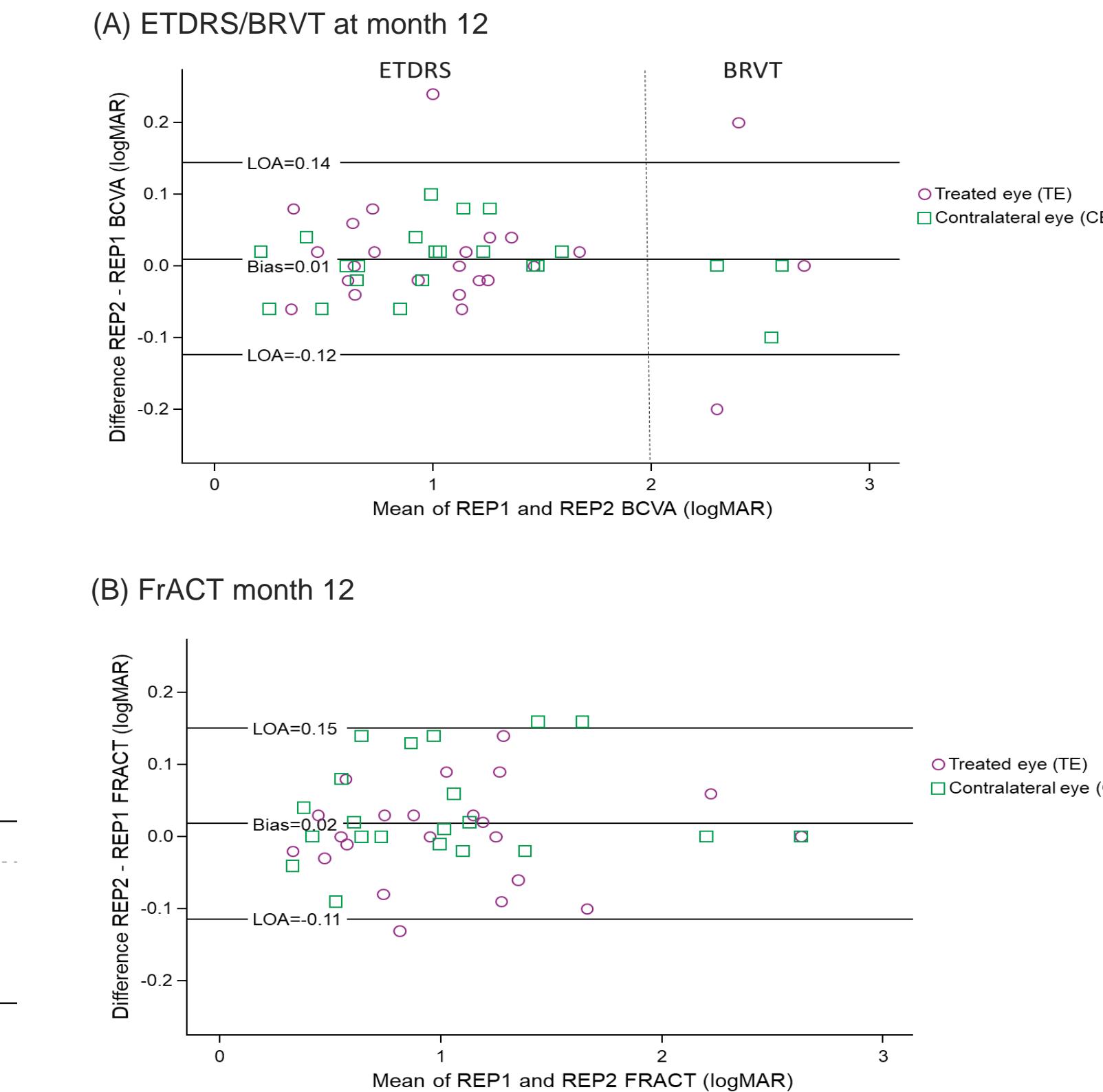
Figure 1. ILLUMINATE study design

Conclusions

- This post-hoc analysis from ILLUMINATE shows consistency between BCVA outcomes when measured by ETDRS/BRVT and FrACT
- Bias was negligible (≤ 1 letter)
- Variability was lower with FrACT testing compared to ETDRS/BRVT for participants with very low vision
- FrACT therefore may offer a more suitable BCVA assessment method for participants with low vision
- A possible explanation is the continuous ETDRS scale used by FrACT, in contrast to BRVT¹⁰
- These results inform endpoint selection for the Phase 3 HYPERION trial

Acknowledgments

Medical writing support was provided by ApotheCom and funded by Sepul Bio, Laboratoires THEA.


Disclosures for first author

Jasleen K. Jolly is a consultant/contractor for Sepul Bio, Laboratoires THEA.

References

- Leroy BP, et al. Retina. 2021;41:898–907.
- den Hollander AJ, et al. Am J Hum Genet. 2006;79:556–561.
- Russell SR, et al. Nat Med. 2022;28:1014–1021.
- Hafez E, et al. Eye (Lond). 2014;28:1239–1245.
- Schulze-Bonsel K, et al. Invest Ophthalmol Vis Sci. 2006;47:1236–1240.
- Barone S, et al. Invest Ophthalmol Vis Sci. 2024;65:3338.
- Freiburg Vision Test 'FrACT' by Michael Bach. Available at: <https://michaelbach.de/fract/>.
- Ayton LN, et al. Transl Vis Sci Technol. 2020;9:25.
- A Study to Evaluate Efficacy, Safety, Tolerability and Exposure After a Repeat-dose of Sepofarsen (QR-110) in LCA10 (ILLUMINATE). Clinicaltrials.gov (NCT03913143). Available at: <https://clinicaltrials.gov/study/NCT03913143>.
- Jolly JK, et al. OVS. 2019;9:443–452.

Figure 3. Bland-Altman plot for ETDRS/BRVT and FrACT at month 12

BCVA, best-corrected visual acuity; ETDRS, Early Treatment Diabetic Retinopathy Study; FrACT, Freiburg Vision Test; logMAR, logarithm of the minimum angle of resolution; REP, repeated measurement; TE, treatment eye.